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A SPACE-TIME TENSOR FORMULATION FOR 

CONTINUUM MECHANICS IN GENERAL CURVILINEAR, MOVING, 

AND DEFORMING COORDINATE SYSTEMS 

Lee M. Avis 
Langley Research Center 

SUMMARY 

Tensor methods are used to express the continuum equations of motion in general 
curvilinear, moving, and deforming coordinate systems. The space-time tensor formu- 
lation is applicable to situations in which, for example, the boundaries move and deform. 
Placing a coordinate surface on such a boundary simplifies the boundary-condition treat- 
ment. The space-time tensor formulation is also applicable to coordinate systems with 
coordinate surfaces defined as surfaces of constant pressure, density, temperature, or 
any other scalar continuum field function. The vanishing of the function gradient compo- 
nents along the coordinate surfaces may simplify the set of governing equations. In 
numerical integration of the equations of motion, the freedom of motion of the coordinate 
surfaces provides a potential for enhanced resolution of the continuum field function. The 
space-time tensor formulation has been applied to numerical simulations of the atmo- 
sphere and the oceans. 

Two tensor expressions of inertial velocity which provide a convenient flexibility in 
formulating equations of motion are presented. One inertial velocity tensor, in contra- 
variant form, has space components equal to the (nontensor) velocity relative to the coor- 
dinate system and the time component equal to an arbitrary constant (the metric tensor 
providing the velocity of the coordinate system). The other inertial velocity tensor, in 
contravariant form, has a vanishing time component. Also, a tensor of coordinate system 
velocity relative to inertial space exists in the space-time. Expressions for the covariant, 
absolute, and comoving derivatives of general space-time tensors are derived in terms of 
the spatial Christoffel symbols and the coordinate system inertial velocity. Expressions 
for the rates of change of the elements of the space-time metric tensor are presented. 
The equations of motion of a material continuum in the space-time tensor formalism are 
derived from generalized conservation principles from both Lagrangian and Eulerian 
viewpoints. An example problem of an incompressible, inviscid fluid with a top free sur- 
face is considered, where the surfaces of constant pressure (including the top free surface) 
are coordinate surfaces. 



INTRODUCTION 

This paper presents a space-time tensor formulation for nonrelativistic continuum 
mechanics which is applicable to general time-dependent geometry and coordinate systems 
moving with respect to each other. A space-time metric tensor which preserves the 
invariance of the nonrelativistic spatial distance between neighboring simultaneous events 
is defined. Time assumes the absolute character appropriate to Newtonian mechanics. 

The space-time tensor formulation has been applied (ref. 1) to numerical simulation 
of atmosphere and ocean dynamics employing a coordinate system rotating with the Earth 
and having quasi-horizontal coordinate surfaces variable in space and time. This formu- 
lation, by virtue of its generality and compactness, has been found to be a useful device. 

In general, problems which might profitably be expressed in the space-time tensor 
formalism include those with moving and deforming boundaries and/or those in which one 
may choose as coordinate surfaces, surfaces of constant pressure, temperature, or other 
physical parameters. In the former case, the treatment of boundary conditions is facili- 
tated; and the latter may lead to material simplification of the governing equations. Also, 
tracking the chosen physical parameter with coordinate surfaces is potentially a means 
of improving the resolution of the parameter in numerical integration of the equations of 
motion, without decreasing the space and time numerical step sizes. Some examples of 
suitable coordinate-surface-defining functions are density, temperature, and pressure in 
simulations of the troposphere; and pressure (in many cases) in simulations of a general 
fluid in a gravitational field. 

SYMBOLS 

A 

Aij,Aij 

&$i 

a&, 

B 

C(T) 

2 

determinant of matrix of Aij 

covariant and contravariant elements of space-time metric tensors 

covariant and contravariant elements of space-time metric tensors for a 
Riemann space-time which is a subspace of Euclidean space-time 

83 component of fluid comoving acceleration 

= AN+1 N+l - ’ , 

source term tensor, defined by equation (66) 



D( ) absolute differential 

fi space-time tensor of force per unit volume 

gcYp,g 
QD covariant and contravariant elements of N-space metric tensor 

-tip 
g,p covariant and contravariant elements of a subspace of Euclidean 3-space 

g,E determinants of c 3 ge 

= 
g determinant of matrix of covariant elements of metric tensor in subspace 

= 
of y0 coordinates 

Ji 

K constant between zero and unity 

“i 

0 

P 

PO 

si 

velocity of ?C coordinate system relative to inertial Z system, 

number of spatial dimensions in Riemann space-time, N = 1,2,3 

number of dimensions in subspace of Euclidean 3-space, N= 1,2 

covariant vector normal to bottom boundary 

origin of Riemann coordinates 

pressure 

pressure at top free surface, atmospheric pressure 

inertial velocity of coordinate system, 

7 component of inertial velocity of coordinate system in subspace of 
Euclidean 3 -space 
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s Y1 ( ‘1 

ds 

WI 

fi 

t 

Ui 

Vi 

V 

Wi 

Xi 

-i 
X 

. . 
YY 

zi 

ds along geodesic from point 0 to point yi 

general space-time tensor 

time 

inertial velocity, Vi + Si 

inertial velocity, dy i/dt 

( Ui _ Ji) ni at bottom boundary 

inertial velocity of a particular coordinate system, the y system of 
appendix B; defined in appendix D (eqs. (D9) and (DlO)) 

Riemann coordinates 

spherical polar coordinates fixed with respect to the rotating Earth; 
X1, H2, and f3 are south, east, and radially outward, respectively, 
and dZ4 = X dt 

general curvilinear, moving and deforming coordinates 

any coordinates such that Aij(z) = 
%) 

locally 

inertial Cartesian coordinate system over Euclidean space-time of 
four dimensions 

geocentric Cartesian coordinate system (approximately inertial) 

Kronecker delta, equal to zero for i # j and equal to unity for i = j 
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t-3 

x 

5 

P 

52 

w 

wij 

Notation: 

gravitational potential of Earth 

arbitrary nonvanishing constant 

variable of integration 

mass density 

angular velocity of Earth’s rotation relative to inertial space 

angular velocity of rotation of pressure gradient relative to z’ coordinate 
system 

space-time vorticity, i 
( 

V. 
l/j - VjJi > 

Christoffel symbol of the second kind in space-time 

Christoffel symbol of the second kind in N-space 

[I 
a( 
a( 1 * 

Y1 

Cl N 

( 'lo 

( )li 

Christoffel symbol of the second kind in Riemann space-time which is 
a subspace of Euclidean space-time 

upper parenthetical term is expressed in coordinate system labeled by 
lower parenthetical symbol (upper parentheses may be absent) 

Y1 coordinates are held fixed for the partial differentiation 

bracketed expression is evaluated in N-space 

parenthetical expression is evaluated at point 0 

covariant differentiation 
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ICI determinant of matrix [ ) 

defined as zero 

defined as zero 

Indices: 

The range of Roman indices i to u is 1 to N + 1; of Greek indices without 
bars, 1 to N. 

The range of Roman indices ; to ii is 1 to z + 1; of Greek indices a! to w, 
1 to N. 

The range of Greek indices z to z is 1 to (N - R). 

The index b refers to the bottom boundary. 

The summation convention observed herein is that a lowercase letter occurring 
exactly twice in a term, once as a lower index and once as an upper index, denotes sum- 
mation over those indices. 

ANALYSIS 

Introductory Remarks 

The tensor formulation developed in the analysis applies to coordinate transforma- 
tions of the form 

yl = yi j?, . . ‘, fN, yN+l 

) i 

fj = j3 yl, N N+l . --,Y ,Y 

1 (1) 

which are transformations of the coordinates of an event in space-time, where N is the 
number of spatial dimensions and 

fN+l= yN+l = At 

6 

(2) 



The symbol X is an arbitrary nonvanishing constant and t is the time elapsed since 
an arbitrary reference time. The functions yi and y3 are required to be single valued 
and continuous with continuous derivatives through the third order. Such transformations 
and coordinate systems are called “allowed” herein. 

A brief outline and description of the development sequence is given as follows: 

“The Space-Time Metric Tensor” 

A space-time interval in a local Cartesian coordinate system, which establishes a 
space-time metric tensor over a Riemann “space,” is introduced. The full four- 
dimensional space-time is Euclidean, but the generality of Riemann space-time is retained 
for application to surfaces with Gaussian curvature. Appendix A develops the relationship 
of the Christoffel symbols in Riemann space-time to those in Euclidean space-time. 

“Inertial Velocity Tensors” 

Two tensor expressions of inertial velocity which provide a convenient flexibility in 
formulating equations of motion are presented. One inertial velocity tensor has the time 
component h and the N contravariant space components equal to the (nontensor) veloc- 
ity relative to the coordinate system. The other inertial velocity tensor, in contravariant 
form, has a vanishing time component. The difference of the latter and former tensors is 
the coordinate system velocity tensor (which, upon coordinate transformation, applies to 
the coordinate system transformed to). 

“Space-Time Christoffel Symbols” 

The Christoffel symbols for the Riemann space-time are expressed in terms of the 
coordinate system velocity and the Christoffel symbols for N-space. 

“The Space-Time Tensorial Derivatives” 

The covariant, absolute, and comoving derivatives of a general tensor are derived by 
use of the expressions for the space-time Christoffel symbols. The covariant and 
comoving derivatives are then specialized for first- and second-rank tensors. 

“The Rates of Change of the Metric Tensors” 

The partial time derivatives of the covariant and contravariant space-time metric 
tensors and N-space metric tensors are derived. 

“Equations of Motion of a Material Continuum” 

The equations of transport for a general continuum tensor field are derived from 
generalized conservation principles, and then specialized to various forms of the equations 
of motion. A space-time vorticity tensor is introduced, and the equations of motion are 
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expressed in terms of vorticity and kinetic energy. The Eulerian and Lagrangian time 
derivatives of vorticity are expressed in terms of the fields of velocity, vorticity, and 
acceleration. 

These results are applied in appendix B to an example problem, employing constant- 
pressure coordinate surfaces, of an ideal fluid moving over the Earth. Appendixes C 
and D are supplements to appendix B. 

The Space-Time Metric Tensor 

This section introduces a space-time metric tensor which renders invariant the 
spatial part of the space-time interval as well as the total space-time interval. 

The square of the space-time interval (ds)’ is defined by 

(W2 = dzi dzi (3) 

where the N coordinates za, are of a local Cartesian system regarded as fixed in 

inertial space and zN+l = Xt. Transforming the zi coordinate increments to any 
allowed coordinate system y yields 

(ds)2 = azi ad - - dym dy” = Amn dym dy” 
aym ayn 

where the spatial components of the space-time metric tensor A,, 

az 
A y azy azN+l azN+l azy azy 

QP 
z--+--=-P 

aye' a# af ayp af a# 

(4) 

can be written 

(5) 

since 

azN+l 

4 
= h 

and, in general, 

i3ZN+-l azN+l o -=-= 
af aya! 



- 

The other components of Amn are 

A a,N+l 
YP 

AN+l,N+l 

(7) 

(8) 

az 
Y 

where, it might be noted, ( ) at 
is the Cartesian N-vector of the velocity of the 

YP 

y coordinate system relative to the inertial z system. Equation (5) states that the 
spatial components of the covariant space-time metric tensor are the components of the 
covariant N-space metric tensor, or g QP. 

The time coordinate increment transforms by invariance, from equation (2); thus, 
rearranging equation (3) yields 

dz dzy = (ds)2 
Y - dzN+l dzN+l = (ds)2 - (X)2(dt)2 = (ds); 

which is invariant. 

occurring in equations (7) and (8) is 

YP 

expressed in y coordinates by 

or 

(9) 
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is the velocity of the y coordinate system relative to the z system, 
Z@ 

expressed in y coordinates. Let 

p=-ig ( ) Z@ 

Then, from equations (5) and (7) to (ll), 

A 1 
a,N+l = AN+l,cy = r; go@ S@ 

The components of the contravariant space-time metric tensor are given by 

. . 
Aij = aY’ aYJ -- 

azk aZk 

or 

A@,N+l = AN+~,Q = -1 c$Y 
x 

(10) 

(11) 

(12) 

(13) 

where g aP is the contravariant N-space metric tensor. 
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It should be noted that the coordinate system velocity Sa given by equation (10) is 
not a space-time tensor, because the time component has not been defined. A space-time 
tensor of coordinate system velocity is introduced in the following section. 

Inertial Velocity Tensors 

The space-time tensor 

where dyi is the coordinate increment tensor associated with two neighboring events in 

space-time and dt = ; dy4, transforms to the local Cartesian inertial z system as 

the spatial components of which constitute the Cartesian N-vector of inertial velocity. 
The time component X can be interpreted as a constant uniform velocity normal to all 
spatial directions. If the two events in equation (14) are the presence of a certain particle, 
then Vi is an inertial space-time velocity of the particle. 

Another inertial velocity space-time tensor is defined by the contravariant vector 
transformation from the z coordinate system to any allowed system y of the Cartesian 
space-time vector 

#+l - o 
(d - 

Thus, 

UtY) 
=$ d 

(Z) azj 

dzy d =- 
dt azy 

= qy) - ig * (I 
Z@ 

(15) 
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which has a vanishing time component. From equation (lo), the spatial components 
of ui are 

UQ! = va + sa 

which expresses inertial velocity as the sum of coordinate system velocity Sa, and 
velocity Va! relative to the coordinate system. 

is the difference between two space-time 
Z@ 

tensors and is therefore a space-time tensor. The tensor of coordinate system inertial 
velocity Si is defined as 

Sty) = - g z~ * (I (16) 

and equation (15) becomes 

ui = vi + si (17) 

. The relationship among the velocities U1, V1, and S1 under coordinate transformation 
is illustrated in sketch (a), which represents a two-dimensional case. The curve l% is 

x 

1 F z.1 

Sketch (a) 
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- 

the path taken by a point of fixed spatial y coordinate as seen in the z czrdinate sys- 
tem. The line A^c r;presents Vts) of a particz at point A. The line AE, drawn 
tangent to the curve G at point A, intersects BC to determine the spatial component 
of the y coordinate system velocity, represented by %. The point E partitions the 
spatial component of inertial velocity U&, into the y coordinate system velocity &% 

and the particle velocity fi relative to the y system, expressed by 

l 1 

i ) 

ad 
%) = $i YY) + at 

Y1 

or, in y’ units, from equations (9) and (IO), 

$Y, = 3Y) + GY, 

The time components of U, V, and S are similarly related, since 
v2 - $2 

(Y> - (Y> = h: 

0 and 

$Y, = ?Y, + s2Y) 

Hence, 

holds for any allowed transformation from the coordinate system z1,z2 of sketch (a). 

Lowering the indices of Ui and V1 and applying equations (12) and (17) yields, 
for any allowed coordinate system, 

(18) 
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The existence of two inertial velocity tensors V and U provides a convenient 
flexibility in formulating the dynamical equations in curvilinear, moving coordinate sys- 
tems. The space components of Vi constitute the velocity relative to the coordinate 
grid, which is a convenient choice of velocity representation to use in the convective 
terms of the dynamical equations of a material continuum, for example. On the other 
hand, an advantage of representing inertial velocity by U is that the time component 
of Ui vanishes. Inertial velocities might be represented by U at some places and 
by V at other places, whichever is more convenient, in the problem formulation. A 
given velocity representation can be tailored to one’s needs by use of equation (17). 

Space-Time Christoffel Symbols 

In preparation for the discussion of covariant and comoving derivatives, the space- 

time Christoffel symbols of the second kind are derived in this section in terms 

of the N-space Christoffel symbols and the coordinate system inertial 

velocity. 

The Christoffel symbols of the second kind, defined as 

transform from an ,allowed coordinate system y to any allowed system f by (p. 48, 
ref. 2) 

(1% 

The second expression on the right-hand side implies that 
c 1 

j i k is not a tensor. In 

Euclidean “‘space,1t such as four-dimensional space-time, it is always possible to define 
N+l 

a coordinate system z such that (ds)2 = 
cc 

d$ d$ > everywhere (p. 583, ref. 3). 
i=l 

The metric tensor components are then constant and the Christoffel symbols vanish in 
the Z coordinate system. Therefore, in Euclidean space-time, from equation (20), 

14 



r { 1 agr a2$ 
m n 

0 
=- 

7 aEJ ajfm ayn 
(21) 

Equation (21) can be generalized for application to non-Euclidean Riemann space-time by 
use of Riemann coordinates xi, which are defined by (p. 584, ref. 3) 

x1 = spl (22) 

where p1 is the unit tangent vector at the origin x - 0 of a geodesic joining (i- > 
the origin and the point yj and s is the geodesic “distance” between the two points, or 

s= ds (along geodesic) 

From reference 3 (p. 584), Riemann coordinates can be defined in any Riemann space at 
any given origin, and at the origin all Christoffel symbols vanish. Therefore, from 
equation (20), at the origin of the x system, 

r { 1 ayr a2J 
m n 

0 
=y 

7 ad aym ay" 
(23) 

The vanishing of the Christoffel symbols in Riemann coordinates at the origin often is 
used to simplify mathematical arguments. 

It is shown in the following paragraph that dxN+l = h dt, as required by equation (2) 
for the x coordinate system to be allowed. 

A geodesic is uniquely defined by any given point on the geodesic, the direction (unit 
tangent vector) dyi/d s of the geodesic at the given point, and the equation (p. 583, 
ref. 3) 

d2yi 
g+ 

(24) 

or 

(25) 
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where D is the absolute differential operator. In Riemann coordinates, equation (24) 
becomes, by equation (22), 

d2xi 
g= 

0 (26) 

The non-Euclidean space-time of interest here is a subspace of Euclidean space-time. 
It is shown in equations (A19) to (A21) of appendix A that 

0 (27) 

in any allowed coordinate system over Riemann space-time. From equations (24) and (27), 

d2yN+1 
hd2td-J 

(ds)2 = (ds)2 

or 

dt ds = Constant 

and equation (26) can be written 

d2xi 
*= 

0 

(29) 

(30) 

(31) 

which implies that the acceleration tensor - 

tions (30) and (22) yield 
vanishes along the geodesic. Equa- 

(32) 

where are evaluated at the origin 0 of the Riemann coordinate 

system. 
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The space components of the space-time Christoffel symbols reduce to 

the N-space Christoffel symbols, as shown in the remainder of this section. For dt = 0, 

ds=/A,,=,/= 

which is the N-space interval. Equation (24) for 
becomes, for this case, 

and the equation for the N-space geodesic is 

(33) 

the space-time geodesic for i f N + 1 

(34) 

(35) 

where is the N-space Christoffel symbol of the second kind. Equations (34) 

and (35) pertain to the same path, an extremal path for the integral of ds, by equation (33); 
therefore, 

(36) 

since dyp / ds is arbitrary at the origin of the Riemann coordinate system, which can be 
anywhere in the Riemann space. 

Raising the first index in equation (28) yields 

(37) 

and 
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Therefore, 

and 

where 

Finally, 

0 

(38) 

(39) 

(40) 

(41) 

which is equation (27). 

The Space-Time Tensorial Derivatives 

In this section, the covariant and comoving derivatives of a tensor ? of any rank 

are expressed in terms of the N-space Christoffel symbols 
{ 1 pa? N 

and the coordi- 

nate system velocity S1. It is convenient to write the definitions 

c 3 SN+l 
lP/” 

(42) 
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The expression for the covariant derivative of a general tensor is 

XT 
rl’ ’ erm,lq _ 
sl.. .sn 

rl. . .rm 
Tqs2.. .sn - * * * - 

and the comoving derivative is 

ET rl”‘rm = Trl”‘rm vp 
dt S1.. .Sn S1.. .S, p 

I 
(44) 

By use of equations (36), (38), (39), (41), and (42), equation (43) becomes, for p # N + 1, 

+ T(N+l)r2. . .rm 
sl.. .sn 

XT 
rl. . .rmslY + Trl.. .rmel(N+l) 
Sl.. .sn sl.. .sn 

(45) 

For p = N + 1, equation (43) becomes 

19 



x (.+S*[,‘~~~ T;;:::f;-l(N+l) - (1 - by;‘) ;&JN 

rl.. .r, 
x Tys2.. .sn _ 6;;‘(;)“(-+s”csia,) T;;;::l‘; - - -a 

(46) 

The covariant and comoving derivatives of first- and second-rank tensors are suf- 
ficiently important to warrant special expressions. For a contravariant vector T’, 
from equations (45) and (46), 

Tr+(l-e;+l) {&} TY+(l-6;+l);~fjP]NTN+1 (47) 

T;N+l = x % ’ aTr+(l-6;+l)$;y]NTY 

+ (1 - 6;+l) (;)2($+S”~~G-)TN+’ 

, 

(46) 

20 



In particular, 

TN+1 
IP 

- a TN+1 
wp 

(4% 

g Tr = T’ VP = Tr 
IP 

lN+l VN+l + TiP VP = TiN+l h + T’ia VP 

=~Tr+(l-O$l)~f~NTY+(l-~~+l);(~+S~~~~N)TN+l ’ 

+~VP+(l-~~+l){yr~}NTIVQ+(l-b~+l)~~~B]NTN+lV~ (50) 

For a covariant vector T,, from equations (45) and (46), 

Tqo = ayp a T,- (1-b:‘) {sYP)NTy-~;+l$S$jNTy 

TsIN+l =;;Ts- l-6, 
( N+l) i k);& Ty 

g T, = T, p VP = T s IN+1 VN+l + T 
SIB 

VP= T slN+l A + Tslp VP 

=;Ts- (1-6F1)bjJNTy-6s N+l ;(,-+S”~$-j~ Ty 

(51) 

(52) 



For a contravariant second-rank tensor T rlr2 , from equations (45) and (46), 

Trlr2 a Tr1r2 
Ip =ayp 

+ (1 - 6&) ({/’ b}NTY12 +; &JNT(N+1)r2) 

+(1-~~l)({~r2~}NTr1Y+~[SE;81NTrl(N*1)) . (54) 

(55) 

DT rlr2 
z 

= ~~1~2 VP = Trlr2 
b (N+l 

+l + Trlr2 VP = Tr1r2 
P IN+1 h + Trl’;la VP 

= $ ~~~~~ + (1 - 6zl)[Er$JN ~~~~ + i($+ s$$JJ T(N+1)r2 

+VB((y r1 3, TYr2 +$‘;J, T(N+1)r2] + (1 - &)[Cs’i-jN TrlY 

+ ;($ + S@kr;&)Trl(-‘) + VP (cy r2 JN TrlY -I- $‘$j, Trl,,,,,)j 

+ VP a Trlr2 

aYP 
(56) 
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For a covariant second-rank tensor T 
s1s2’ 

from equations (45) and (46), 

Tsp21P = ayP a TSlS2 - (1 - q+‘) {Sly B)NTys2 - c;y n~&%2 

- (1 - q) {s2yp}NTsly - ql$qJNTBly 

Tsl~2jN+1 
2 a 

kzTslS2 - (1 - cp) $‘;sJN%2 

(57) 

(58) 

ET 
dt sls2 

=T 
s1s2lp vp = Tsls2 (N+l VN+l + T 

s1s2P 
VP 

= Tsl~2(N+1 * + Tsl~21p VP 
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For a mixed second-rank tensor Ti which can be considered to be either TE,’ or 

Tf-S 
, from equations (45) and (46), 

TilP ayP =aT;+(l-b;+l) ({yrP)NT;+;E;83,Tr1) 

- (T+) {syB) T;-eF1(#jp]NTf 

& T; = Tr s p VP = T:[N+l I 
VN+l + T’ SIP 

I,kT’ 
slN+l VP 

(60) 

(61) 

The Rates of Change of the Metric Tensors 

The partial time derivatives of the covariant and contravariant metric tensor com- 
ponents are derived in this section in terms of the coordinate system velocity Si, the ’ 

metric tensors, and the N-space Christoffel symbols 
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The covariant derivative of any form .of the metric tensor vanishes identically 
(ref. 4, p. 43); hence, by equations (58) and (55), 

$(Aij) = (1 - br+‘) [Tsd, Ayj + 6y1 ’ 
(X) (3?+ ‘+$iJJ Arj 

+ (1 - br+‘) EIJNAiy + 6?+’ ’ (X) (Z + “E$JJ Aiy 

Applying equations (12) and (13) yields 

;(A@) = -Eqy]N gyp - Ei;JN gay + (;)2 $(s’y “) - 

(63) 

(64) 

(654 

(65b) 
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Equations of Motion of a Material Continuum 

In this section, the equations of motion are derived in the Riemann space-time ten- 
sor formalism from fundamental principles. This approach, rather than that of merely 
restating the existing equations of motion in the tensor notation, is taken in order to 
demonstrate the versatility and simplicity of the RiemaM space-time tensor formulation. 

The equations describing the motions and other properties of a material body 
regarded as continuous are commonly written from either of two viewpoints, the Eulerian 
or the Lagrangian. The Eulerian viewpoint is that of an observer at rest relative to the 
coordinate system; the Lagrangian viewpoint is that of an observer at rest relative to the 
material continuum. 

An Eulerian statement of generalized conservation of a general tensor quantity T 
in an inertial rectangular Cartesian system Z is 

$ (pw) + 3 (P9 = 43 036) 

where p is the mass density and C(p’i’) is the per unit volume rate of creation of the 
product of mass M and T, or the source term. Here, “creation” is the increase in a 
quantity from any cause other than transport. The first term on the left side of equa- 
tion (66) is the net per volume flux of MT transported out of a given volume element, 
and the second term on the left side is the observed per volume rate of increase of M+ 
within the volume element. 

-N+l Equation (66) can be written, by substituting dz = h dt and VNjl = X, 

-$d+) = C(P’i’) (67) 

which generalizes to 

(pfv’),i = c(p?) (68) 

in any allowed coordinate system in Euclidean space-time. The mass continuity equation 
in Cartesian coordinates 

apvy +$=o 
aZy ( ) 

is equation (66) for T = 1 and C(p) = 0; thus, 
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( ) pvi Ii=0 (69) 

in Euclidean space-time, by equations (66), (67), and (68). Applying equation (69) to 
equation (68) yields the Lagrangian expression of generalized conservation 

(70) 

It follows from equations (A16) and (A17) in appendix A and equation (43) that equation (70) 
holds in any Riemann space-time which is a subspace of Euclidean space-time if all com- 
ponents of Vi and ?’ not contained in the subspace vanish. (All components of Si 
normal to the subspace vanish, by eq. (A4) in appendix A.) 

Equation (69) also holds in the Riemann subspace if all components of Vi normal 
to the subspace vanish and if 

~.y~)=+-$(~) 
ir 

(71) 

where < is the subspace index, g is the determinant of the covariant spatial metric in 
the subspace, and g is the spatial metric determinant in Euclidean space-time. The 
proof follows from the well-known identity 

and equations (12) for the space-time covariant metric tensor. Let 

B=A N+l,N+l 

Then 

A= 

I 
I Al,N+i 
I . 

I 
I . 
I 

AN,N+l 

l,N+l ’ ’ ’ AN,N+l 

+ 

I 

I 
I 
I 

gap ’ I 
I 
I s---m 

0 0 . . . 

Al,N+l 
. 

A N,N+l 

1 

(72) 

(73) 
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In the first determinant on the right side, the (N+l)th row is a linear combination of the 
rows; that is, from equations (l2), 

(N+l)th row = $ SN (1st row) + . . . + x (Nth row) 

Thus, the determinant vanishes, and 

A=g (74) 

in any allowed coordinate system in Riemann space-time. Applying equations (74) and 
(72) to equation (69) yields 

( I la . 
pvpqy-& gpvl =o 

k- > 

or, by the assumption of Vi restricted to the subspace, 

( ‘1 PV’ li=k$(GP’) 

= 0 

(75) 

(‘76) 

which differs from the subspace divergence expression by 

Thus, equation (71) and the assumed restriction of Vi to the subspace are sufficient con- 
ditions for equation (69) to hold in the Riemann subspace. 

Interpretation of the condition expressed by equation (71) is facilitated by letting the 

coordinates ytf, held fixed to define the Riemann subspace, be normal to the subspace 

and, for two y 6 coordinates, mutually orthogonal. Then 

(77) 
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where g is the determinant of the covariant metric tensor in the subspace of the 
yFi coordinates. Substitution of equation (77) into equation (71) yields the condition 
equivalent to equation (71) 

a = 
5 (5) g 0 = 
aY1 

(78) 

If the subspace of ytf is one-dimensional, then /- 2 is the distance per unit increment 

of yk If the subspace of yz is two-dimensional, then d- z is the area per unit coor- 

dinate increment product dy2 dy3 for E = 2,3. 

Lf equations (69) and (70) both hold in a Riemann space-time, then so does equa- 
tion (68), since 

( ) pvi + Ii.- - pvi T,i + (PI+)! i + = c(p’i’) (79) 

Therefore, sufficient conditions for equation (79) to hold in a Riemann space-time are 

(1) All components of T and Vi not contained in the Riemann subspace vanish 

(2) A@) = 0, or equivalently, 
aY1 

i j(g) = -& -L(G) 

For some applications of fluid mechanics, sources and sinks for mass are employed 
as a mathematical artifice (see, for example, ref. 5, chapter 5), which allows C(p) to 
be nonzero. No sources or sinks for mass are employed herein, and C(p) vanishes 
everywhere. 

Generalized conservation of mass and momentum is expressible in a single tensor 
equation by setting ?’ = Vj in equation (68): 

(/cd vgi = c!(pd) = fj 

where, from equation (70), the force per unit volume is 

c(pv”) = fQI 

c(pvN+l) = fN+l = 0 J 

(80) 
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Thus, fj is a space-time tensor. The Lagrangian form of equation (80) is 

$ pvj + pvj $. = fj 
( 1 11 

Either equation (80) or (82) expresses generalized conservation of momentum for 
j # N + 1, and mass conservation for j = N + 1. 

The force per unit volume, given by the covariant form of equation (80), 

fi = pvi vj 
( ) I j 

is separated into the work-producing and velocity-turning components by 

fi = (PVj), j Vi + PVj Vi j 
I 

Apvj lvi,j + ‘jli) + (viij - vjiifl 

1 =- 
2p 

~+tP(,j V,),i+PVj ~ (viij - vj,i) 

= ; p vj vj 
i ) 

-I- apvj w.. 
Ii ‘J 

(82) 

(83) 

by use of the Eulerian mass conservation equation (69), where wij is the “space-time 
vorticity” given by 

w..=;(vi,j djli) =;(fy$) 1J (84) 

- 0 ;;nce Siij = ( by eqs. (A19) and (A21) in appendix A), an alternate expression for wij 

wij +Jirj -silj - UjliiSjji) =qp) (85) 
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The invariant fi Vi is, from equation (83), 

fivLpD 1 j ,(zv Vj) = ‘~~PV’V~ (86) 

by equation (70) and the skew-symmetry of wij. 

An alternative to the Eulerian momentum equation (80) in terms of kinetic energy 
and vorticity is obtained by partially expanding equation (83) for i = CY: 

ay + ‘pVN+l Oa, , N+l 

‘pa 
( ) 
hj vj +2pvwa~ 

aya! 2 
+2pA+(3-3 (87) 

where, from equations (18), 

aVN+l px----= 
aYa! 

Thus, rearranging equation (87) gives 

aVck! aVcY px-= -= 
ayN+l 

P at 
fa! - p -?- L vj v. 

( ) aya 2 3 - 2pvy Way -I- p ” UP sp 
( ) 

(88) 
ay 

The Eulerian rate of change of the vorticity w cry in equation (88) is obtained by 

1 a ,LL to aV, 
av 

applying the operators - - and and 2 
2 a# 2 aya at at ' 

and summing: 

(8% 
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Thus, if the spatial components of the vorticity field vanish and the acceleration is 
derivable from a potential function, then the spatial components of the vorticity vanish 
for all time. 

The Lagrangian rate of change of vorticity is 

&(w@) = $w@) - Wai (ai j} vj - wip {@ i j} vj 

where 

by equation (89) and the skew-symmetry of w oy. The second bracketed term on the 
right vanishes, by the identity 

Thus, 

and 

(91) 

(92) 
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by the skew-symmetry of Wip and the vanishing of 

source term for the vorticity-mass product 

by equation (27). The 

c(PWaB> = p &(%p) 
evaluated by equation (92), can now be substituted into the generalized conservation equa- 
tions (68) and (70), with ?’ = wop 

CONCLUSIONS 

A space-time tensor formulation for nonrelativistic continuum mechanics has been 
presented which assures that any relationship of quantities expressed as a space-time 
tensor equation is equivalently expressed in all general curvilinear, moving, deforming 
coordinate systems. For example, D’Alambert’s “force” is inherently accounted for in 
the tensor expression and transformation of acceleration and force. 

Thus, the space-time tensor formulation applies to situations in which boundaries 
move and deform, and a coordinate surface is placed on the boundary in order to simplify 
the boundary-condition treatment. 

The spa.ce-time tensor formulation also applies to situations in which one coordinate 
can be defined as a function of any continuum scalar (e.g., pressure, temperature, or 
density). During numerical integration of the equations of motion, the continuum scalar 
can then be represented with enhanced resolution by coordinate surfaces which move and 
deform as the scalar varies. Also, the vanishing of the scalar gradient along these coor- 
dinate surfaces can be a significant simplification. 

The generality and compactness of the space-time tensor formulation lend it utility 
as a vehicle for formal manipulations as well. 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
October 8, 1976 
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APPENDIX A 

RELATIONSHIP OF CHRISTOFFEL SYMBOLS 

IN RlEMANN SPACE-TIME TO THOSE 

IN EUCLIDEAN SPACE-TIME 

The Riemann space-time considered herein is the locus of constant y E , where 
X=3 or Z = 2,3; and where the y coordinate system is any allowed system over 
Euclidean four-dimensional space-time. Quantities and indices defined with respect to 
the Riemann subspace of Euclidean space-time are denoted by a single bar; for example: 

% = Number of spatial dimensions in the subspace 

5, 3, etc. = 1,. . .,N 

dyG+l = X dt = dy N+l 

f’y = yz 

For arbitrary coordinate displacements in the subspace, the relationships 

x-- -5 ap 6’ dy -F-= x Cypdy’Y dy F = Azpdyz dy F 

Aa! N+~ dycy dy -K?+l = A 
, 

E4 dy’ dy4 

x- N+l,~+l dfN+l dj’+l = A44 dy4 dy4 

imply, with equations (12), that 

x, N+~ = AE4 
, (AlI 
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APPENDIX A 

Therefore, from equations (12), 

or, 

-? T where S = S follows from equation (lo), and where indices with a double bar are of 
the y coordinates held fixed to define the subspace. 

From equations (12) and (Al), 

A44 , = Kg+, s+l = 0 ; gap sLu s@+ 1 

1 0 --sq+ 1 
= h. gc-Y,p 

Therefore, 

or, by equation (A2), 

(A3) 

The left-hand side of equation (A3) is positive-definite; hence 

sz = 0 (A4) 

Equation (20) expresses the transformation of the Christoffel symbols of the second 
kind between coordinate systems over the same space-time, and so, it is sufficient to con- 
sider the simplifying case in which the yz coordinates are normal to the spatial subspace 
coordinates y@ and, if z = 1, the y2 coordinate is normal to the y3 coordinate. 
Then, 
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dy 3 AQi dy’ 6; = 0 (N= 1 or 2) 1 
dy2 A2i dy a! i hz = 0 

dy 2 Aai dy3 6; = 0 

(Tj= 1) 

(N= 1) 
i 

(A5) 

follow from the condition of orthogonality between the general contravariant vectors El 

and Qi; that is, EiQ1 = 0. Therefore, 

AFT = 0 (N=lor2) 

A23 = 0 

and, by equations (12), (A4), and (A6), 

In general, 

Thus, from equations (A6) and (A7), 

(N=l) J 
(A6) 

(A7) 

Aim A* = ~5~ = Air% A 
z 

pk + A== Ah + A4z A4k 
Pa 
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or 

If ==2,then B=z = 3, and equation (A8) yields A33 # 0 and 

AkO 

AE4 ~0 
1 

If E = 1, then F, z = 2 or 3, and equations (A8) and (A6) yield 

Thus equations (AlO) hold for N = 1 and 2. 

The spatial metric g cllp is uniquely determined by the g 
aP 

according to the 
relationship 

(A% 

From equations (12), (Al), and (A6), 

Therefore, 

-Tip= cwp 
g !.z 

(A8) 

(Al 1) 

UW 
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APPBNDIX A 

From equations (lo), (13), and (Al2), 

The Christoffel symbol of the second hind in the y coordinate system over 
Euclidean space-time (which also holds for Riemann space) is given by (eq. (19)) 

the components of which in the subspace of constant y’ are 

(A13) 

(A14) 

(Al 5) 

By equations (AlO), Acyn vanishes for n = E; therefore, from equations (A13) and (Al), 
the spatial components of the subspace Christoffel symbol are given by 

L4w 

where, it should be emphasized, the y’ coordinates (which are those held fixed to define 
the Riemann subspace) are normal to the spatial coordinates in the subspace and, for 
E = 1, normal to each other. Similarly, from equations (AlO), (Al3), and (Al), 

{E+A+l-) = {4E4) 

{F=+c.I} = {$I} 

(Al7a) 

(Al7b) 

(Al7c) 
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(A17d) 

(A17e) 

for the y z coordinates normal to the spatial coordinates in the Riemann subspace and, 

for E = 1, mutually orthogonal. 

All Christoffel symbols of the form 

dinate system vanish, as shown in the following equations, where i,j = 1, . . ., 
In a Cartesian coordinate system z over Euclidean space-time, the covariant derivative 

Of Si 

becomes 

siJj(g = 2 = 0 

by equations (18) So = 0, SN+l = -X in any allowed . Therefore, 

4 SiJj(y) = x i j = 
{ > 

0 

and, by equations (Al7), 

{ I 

- N+l: =o 
1 3 

Thus, 

(Al% 

WW 

(A211 
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APPENDIX B 

EXAMPLE PROBLEM OF IDEAL FLUID WITH TOP FREE SURFACE 

IN WHICH SURFACES OF CONSTANT PRESSURE 

ARE USED AS COORDINATE SURFACES 

Coordinate System 

Although the governing equations of a material continuum usually have the simplest 
form when expressed in Cartesian coordinates, it is often advantageous in solving the 
equations to set coordinate surfaces coincident with boundaries, in order to simplify the 
boundary treatment. If the boundaries are moving and deforming, then a moving, deform- 
ing coordinate surface is desirable. 

On the other hand, it is advantageous to define coordinate surfaces as surfaces of 
constant pressure, density, temperature, or any other continuum scalar variable, and to 
define coordinate lines normal to the surfaces. The coordinate surfaces and lines would 
then move and deform as the continuum variable changes (with respect to a rigid coordinate 
system). The vanishing variable gradient components in the family of coordinate surfaces 
and the orthogonality of the other coordinate lines to the surfaces may simplify the set of 
governing equations. 

These points are illustrated in the example problem of an incompressible inviscid 
fluid with a top free surface moving over the Earth, where, as shown in sketch (b), the 

yl, y2 constant 

Land-fluid interface 1 

Sketch (b) 
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surfaces of constant y3 are the surfaces of constant pressure. Implicit in this repre- 
sentation is the assumption that the pressure increase with depth, which requires only 
that the fluid not accelerate downward at a rate equal to or greater than the acceleration 
of gravity. The y3 coordinate lines follow the pressure gradient and thus are normal 
to the constant-pressure surfaces. The land-fluid boundary is not, in general, a surface 
of constant y3. The land-fluid boundary may rise to intersect the fluid free surface, but 
it is assumed that the slope of the land-fluid boundary is less than the slope of the y3 
coordinate lines, so that all y3 coordinate lines intersect the free surface. The y3 
coordinate increments are defined as dy3 = -dp. 

Governing Equations 

For an incompressible, inviscid fluid, the covariant force per unit volume is, from 
equations (12) and (81), 

f4Y) = ( 
ap ae a$ --- 

a9 
p- -=--- 

) 
w ae 

a3 ayO ayQ! 
P- 

aYa 

f4(y) = fty) Ai = ;f’ gy$ S @ 1 = :fG S@ 

(Bl) 

032) 

where p is the pressure, p is the density, and 8 is the gravitational potential. It 
should be noted that 6’ is an invariant scalar in equation (Bl); and, when 0 is considered 
in the inertial 2 coordinate system, it becomes clear that 0 does not contain the cen- 
trifugal “potential” of Earth rotation which is included in the gravity (as opposed to 
gravitational) “potential.” (Neither the centrifugal nor the gravity field is a true potential 
field, because neither is a scalar invariant field.) The centripetal and Coriolis accelera- 
tions appear in the acceleration tensor related to the force per unit volume by 

from equations (70) and (81). 

Equations (Bl) and (B2) in contravariant form are, by equations (13) and (81), 

033) 

04) 
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Expanding equations (B4) by use of 3 = 3 = 0 and 
a$ ay2 

g 
13 

=g 
23 

= 813 = 823 = 0 

yields the expressions for fi 

11 +aeg12 
w2 

f2 = -p 

( 

ae g= ae 22 

w1 
+-g 

aY2 ) 

1 
f3= -($+p$)g33 

f4 = 0 

035) 

036) 

where equation (B5) follows from the orthogonality of the y3 coordinate lines to the 

Y1,Y2 surface. Equation (82) for j = 4 becomes, by use of the incompressibility con- 
dition !@ = 0 dt ’ 

Vii = 0 (B7) 

From equation (28), 

Slj = 0 

Thus, 

uti = vi. + si. - 0 11 11 - 
or, by equation (49), 

uly = 0 

038) 
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From equations (50), (B4), and (B8), 

aup aup =-+-.g+ [l;vl,uy {y “@} uyv@ 
at 

- aup ; aup vY+asPuY+ p { I uy u@ 
at aYY aYy Y G @lo) 

Boundary Conditions 

The pressure p at the top surface is the atmospheric pressure p,, which is 
assumed to be constant. The top surface is a y1,y2 coordinate surface; hence V3 
vanishes and U3 = S3 at the top surface. At the land-fluid boundary, the fluid velocity 
relative to the boundary Ui - Ji is parallel to the boundary, or 

(Ui - J$ni= p- Jg)ny=O 

where Jk dyi is the inertial velocity of the boundary - - 
dt 

, and ni is any non- 
z@ 

vanishing covariant vector normal to the boundary surface. If the region of interest is 
not enclosed by physical boundaries (the top surface and the land-fluid boundary), then 
closure is completed by artificial boundaries, where the boundary condition 

(u’- Jg)ny=v 0312) 

is applied. Equation (Bl2) expresses the component of fluid velocity normal to the bound- 
ary in terms of the specified scalar v. The slope of the artificial boundaries is 
restricted, as is the slope of the land-fluid boundary, to be less than the slope of the 
y3 coordinate lines; thus, all y3 coordinate lines intersect the top free surface. The 
land-fluid boundary and the artificial boundaries are collectively termed the “bottom” 
boundary, and v is zero at the land-fluid boundary. In summary, the boundary conditions 
are 
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u3 = s3 and p = p, (at the top surface) 1 
p - Jby)ny = v 

1 

(Bl3) 
(at the bottom boundary) 

Initial Conditions 

Equations (B9), (BlO), and (B13) determine, in principle, the progression of the 
fluid state from the initial fluid state. The initial fluid state can be specified by the initial 
pressure contours in a rigid coordinate system Z fixed in the rotating Earth and by the 
initial fluid velocity field UQI, . 

0 X 
For this specification of the initial state, knowledge of 

the density field is not required for integrating the equations of motion, as shown in the 
next section. However, if only the top pressure p, contour and U” 

0 
are given, then 

the density field must be known in order to generate the other pressure contours. A pro- 
cedure for initializing the pressure field for a given top surface configuration, velocity 
field U” , 

0 
and density field p is discussed in appendix C. 

i 
The vertical velocity U3..x 

is determined by the other two velocity components by eq. (B9) and the bottom boundary 
( > 

condition. 
1 

The y coordinate system is initialized concurrently with the pressure field. 
Subsequently, at the bottom boundary, yl and y2 are dependent only on X1 it2 2 . 

The X coordinate system is a spherical polar system with Z3 vertical, Z2 
eastward, and Z1 southward; thus, if lunar and solar gravitational perturbations (i.e., 
tidal forces) are neglected, the inertial coordinates ZQI can have the origin at the center 
of the Earth, and the velocity of the 2 coordinate system is 

sq,) = Q (BI5) 

the angular velocity of Earth rotation. 

The bottom boundary vector n# cZ) is determined once for all time at the bottom 

boundary as a function of y1 and y2. 

The quantities y3, v, and av 
( 1 at 

are determined as initial conditions at the 
x0! 

bottom boundary as functions of y1 and y2, as are the quantities 
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aiP 
“P(Y) = n+) ayP 

and, from equation (B12), 

$y) = Jh - & KU1-J1)nl+(U2-J2)n2-3 

(B16a) 

(B16b) 

The following quantities, in addition to gcyp(y), are determined as 

initial conditions throughout the region of interest as functions of yl, y2, and y3: 

a@ -- ae aTi3 
- = aj;3 aye aYe 

($= La (B17a) 

(B17b) 

(B17c) 

which follows from equation (B9) and the identity {@CT y} =$=$(@,wherethe 

integration is along y3 coordinate lines and Uz and y3 

values of U%) and y3, 
b 

are the bottom boundary 
respectively, 

S3 (y) (Yl,Y2,Y3) = U3(Y1,Y2,Po) + ; ~y$poj & % UY dE (B17d) 

which is derived in appendix D (eq. (D’i’)), where the integration is along y3 coordinate 
lines, 

(P= 1,2) (B17e) 

which is derived in appendix D (eq. (D29)), where the integration is along y3 coordinate 
lines, and Jbp = Jp at the bottom boundary. 
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Time-Dependent Calculations 

The equations for the time-dependent calculations, equations (B18) to (B27), are 
given in the order of their use in a numerical integration loop. From equations (B5) 
and (BlO), 

ad 0 = ae 11 ae 12 ad vy _ ad 
at y+ aY lg Tg -- wy 

-uy- {yl@} uQJ+ 1 
wy 

where Vy = Uy - Sy. During the integration time step, all comoving forces per unit mass 
are held fixed in the Z coordinate system. From appendix D (eq. (D33)), 

( ) an$dY) 

at -a = “Y(Y) $5 ( %) - J7;) ) 
X 

(at the bottom boundary) (Bl9) 

From appendix D (eqs. (D36) and (D37)), 

+ f%,, - J3) 
w3 

(B20a) 

at the bottom boundary, where 

(B20b) 

at the bottom boundary. From equations (19), (65), (B5), and (D6), it follows that 

46 



‘APPENDIX B 

i 

0321) 

(%P,Y = 13) 

Taking the time derivative of the expression for Ub) 
in equation (B17c) yields 

(‘)y@’ = (‘)y@ (at bottom boundary) 

(along y3 coordinate lines) ($= 1,2) (B22) 

33 (is11 822 - 812 g12). From equations (D31) and (Dll) in appendix D, 

(!gyly2= ($#=Je, -s?y, 
7 

(~23) 

since at the bottom boundary, y1 and y2 are functions of 2 and Z2 , and Z3 is a 
function of Z1 and ii2. From equation (D7) in appendix D, 

u3 (Y1,Y2,Po + i ly-qpo)k(& % i,n d5 

(along Y 3 coordinate lines) 

From equation (D41) in appendix D, 

_ aJ’ so 

y+ aYy 
(~2 5) 
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From equation (D29) in appendix D, for +,p = 1,2, 

(is),, = (fgyG (at bottom boundary) - Jig ~@$+j& cl5 (B26) 
(along y3 coordinate’lines) 

From equation (D43) in appendix D, 

(P = 12) (~27) 

Equation (B27) completes the time-dependent equations. As mentioned before, 
knowledge of the density field is not required for integrating the equations of motion, 
since p does not appear in the time-dependent equations. The density can be recovered 
by means of the three-component momentum equation; from equation (BlO), 

1 au3 -=*+g33 at+- 
P aY3 ( 

au3 vy + as3 
aYY 

-uY+{y34} uw) 
aYY 

(~28) _ 

where ae 
,y3 

is expressed in terms of *- 2, which are updated by equation (B27) by 
ayl’ ay2 

(P,$ = I,21 (B29) 

This relation follows from the orthogonality of the y3 coordinates to the y1 and 

Y2 coordinates and from - - ae ae gig = 
ayy a@ 

(The negative radical in eq. (B29) is 

discarded as inconsistent with the condition that the pressure increase with depth.) 
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PRESSURE FIELD INITIALIZATION FOR EXAMPLE PROBLEM 

OF APPENDIX B 

A procedure for initializing the pressure field is discussed in this appendix. The 
velocities Utzl, Utz); the density p(z”), . and the configuration of the top free surface 
in the ii coordinate system are arbitrarily specified. If the magnitude of the pressure 

gradient were known everywhere, then the configuration of all of the pressure 

contours would be determined by the configuration of the top surface (of pressure p,), 

since is the displacement from the contour of pressure p to the contour 

of pressure p - dy3. But, from equations (B6), 

-f (“y, -f8 
g?~= a +p ae =-I+~X 

93 aY ay3 w3 

(Cl) 

where f3 and p K 
aY3 

are not known a priori. It will be shown (eq. (C8)) that knowledge 

of gf;) at the top free surface and of the density and inertial velocity fields everywhere 

is sufficient to generate the pressure contours. Then an iterative procedure is suggested 

for determining gf;) at the top free surface. Once the pressure contours are deter- 
mined, the y coordinate system can be established and the velocity field expressed in 
the y system; then the other parameters can be initialized as discussed in appendix B. 

Taking the space-time divergence of fi in equations (B6) yields 

Neglecting the self-gravitation of the fluid so that gQcy = 0, which implies 

g@@ = 0, yields 
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Substituting - - - yields 

m 

(C3) 

Expanding the second term on the right side yields 

since U 

tion (C3) becomes 

and U4 = 0 by equations (15), (27), (28), and (B9). Thus equa- 
l@ - 

Expanding the left-hand side of equation (C4) yields 

(C4) 

(C5) 

since ap = qj3 
a@ + 

and = 0. In equation (C4), 
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apg@” - aP g3cr = -g33 6(Y 
aY@ 

-- 
w3 3 

3 

-{ 1 @ fJ 
gw =12Lg33 +p uo UY 

p ay3 Iy I@ 

The covariant derivative of the metric tensor vanishes; thus, 

IT 3 f33a ,“N=o=$+g3m {?A-) +gau{a3J 
2 

z-g (k- 33 ag33 3 ,Y3 +g33 -- 1 ahz~+gau fi aY3 { CY 1 0 

by use of g 31 E g32 - = 0, g33 = --$, and 
c > 

1 a ~ cU = -- 
i-E aY@ 

Let 

a12 = g11 g22 - g12 g12 

Then 

and 

+ g33 1 a a12 
-4& a12 ay 

33 1 a(\lg33) z-g - 

d- EC33 aY3 
+g33 1 a(a12) 

a12 ay3 

((33 
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Thus, equation (C6) can be written 

l~~Lm-L*-g33pug,u~ 
\I g33 aY3 a12 aY3 p a$ cl! 

where al2 = 811 822 - !Q g12 is the area per unit coordinate increment product 

dy’ dy2. In terms of the displacement dZ3 = fi dy3 along the negative pressure 

gradient, equation (Ci’) becomes 

a(\lg33) \(g33a(a12) @ii a% g33 p U~o uy z--w- 
aE3 a12 aZ3 P a2 CY 

(C7) 

(W 

where g33 is expressed in the y coordinate system and pUQ) 

( 

. . 

) 

la qk! is an invariant 

scalar in space-time equal to pU’. Ul. 
IJ I1 

. The family of surfaces of constant pressure 

can be approximated from a finite-difference form of equation (C8) by numerical integra- 
tion from the top surface to the bottom boundary, given g33 at the top, the density and 
velocity fields, and the configuration of the top surface. An iterative procedure for 
determining g33 at the top surface is described next. 

The configuration of the top free surface, the velocity components U1 and 

UYZ) 2 
(4 

and the density p are specified in an Earth fixed coordinate system ii (with Z3 

as the vertical coordinate). The vertical velocity component U3- 
(4 

is determined by 

UU - 0 and the bottom boundary condition 
IfJ - ( U0 - J”)nu = v. Then, 

(a) The y1 and y2 coordinates are defined at the top surface for the initial time 
in X coordinates. 

(b) At the top surface, 
\I 

g33 is initially approximated by 

d-- g33 = -+i pas/al 

where dZ3 is the displacement element in the y3 direction & dy3. This initial 

approximation neglects acceleration aQ8) normal to the top surface and follows from 

equations (B6) with f3 = 0. 
( a!E) is set equal to zero. 

) 
(c) The y’, y2, and y3 coordinates and the constant pressure surfaces are con- 

structed in x coordinates from a finite-difference form of equation (C8). The density 
and velocity fields are expressed in y coordinates. 
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(d) The sequence of computations in appendix B consisting of the remainder of the 
initial conditions and the time-dependent operations through equation (B22) for $ 
are performed. 

is set equal to aPZl . The acceleration at the top surface in the 

z3 direction afZj is approximated by (from eq. (BlO)) 

The next approximation to 
d-- 

g33 at the top surface is, from equations (B6) and (BlO) 

and the relation g33 = qEc33, 

I 
where is the previous approximation to d-- g33 and K is a constant between 
zero and unity selected by trial and error for fast convergence of 

d- 
g33 at the top 

surface. 

(f) Steps (c) to (e) are repeated until a chosen convergence criterion for 
i-- 

g33 at 
the top surface is satisfied, then the. time-dependent operations of appendix B are 
continued. 
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SUPPLEMENTARY DERIVATIONS FOR TIME-DEPENDENT 

CALCULATIONS OF EXAMPLE PROBLEM 

OF APPENDIX B 

Velocity of y Coordinate System 

All comoving forces per unit mass are held fixed in the 2 coordinate system 
during the integration time step; that is (from eqs. (Bl) and (B2)), 

032) 

is automatically satisfied when eq. (Dl) holds, because and 

(D3) 

(D4) 

Expanding equation (D3) for (Y = 3 yields, by use of dp = -dy3 and the incompressibility 

condition s = 0, 

;{33u} vu+q..+s@ (/J) -0 
or 

as3 -zz- 3 

,Y3 { > 3 u lJu 

From equations (36) and (19) and the relation g w = 0 for $ # 3, equation (D5) becomes 
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-z ,1-L ag33 uu as3 

,Y3 2 833 w” 
03) 

and the top boundary condition S 3 = U3 yields, by integration of equation (D6) along 

Y3 coordinate lines down from the top surface, 

s3 (D’O 

The y coordinate system velocity components S1 and S2 are considered next. 
Sketch (c) shows the pressure gradient and pressure contour at a point R of fixed coor- 
dinates y@ at times t and t + At. The directions of the axes Z3 and E1 are 
indicated; however, the point R can move relative to the origin of the ?, system. The 

H F 
z3 

Sketch (c) 

point R is fixed spatially in the y coordinate system. The pressure gradient at 
time t is H^G. The Z coordinate system is inertial Cartesian with Z3 antiparallel 
to $% and the 23,Z1 plane parallel to the instantaneous plane of rotation of the pres- 
sure gradient at time t. The pressure contours A^B and c^D are of the same pres- 
sure (since y3 at R is fixed) at times t + At and t, respectively. The pressure 
gradient at time t + At is $%. The orthogonality of the pressure gradient to the pres- 
sure contours implies that E and H^G rotate about an axis pointing into the plane of 
the paper at the same angular rate w. Therefore, at time t, 

--s(g),,--$o,, (W 

Let Wi be the inertial velocity of the y coordinate system defined in the 
?r coordinate system by 
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(W 

The definition of Wi is extended to any allowed coordinate system f by requiring W1 
to be a space-time contravariant vector; thus, 

In the y coordinate system, Wi becomes, by equations (9) and (lo), 

p 0 a$? ay @ 
WY)= at (yz=sY) ? 

Y 
I 

wty, = 0 

and, by the tensor character of Wr, 

wP- _ wi a?= so aP 
(Y) - (Y> ayi (Y) q 

1 

(Dll) 

0312) 

Wf?) = s;;y) $= 0 J 
From equations (Dll) it can be seen that Wi 

. . 
is the inertial velocity U1 = V1 + Sr, for 

vg, = 0. 

From equation (D8), 

(Dl3) 

or, by equations (D9), 
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w3jl(z) +?13(z) = O 

since the ?, system is Cartesian. Therefore, 

( wi(jcY) + wjlW ) 

i j 
--= 
ii3 ii1 O 

(Dl4) 

(Dl5) 

The Z1,Z3 plane is parallel to the plane of rotation of both the pressure gradient and 
the pressure contour, as specified in the discussion of sketch (c); thus 

a ag3 

( 1 
-- 
az2 at = 

0 

Ya, 

a aZ2 =. 

( ) 

-- 
a,3 at 

Ya 
I 

and, by equations (D9), 

W312(a) = ’ 

w2/3(Z) = ’ 

Therefore, 

ay5 ayj --= 
wiJjW ag3 az2 O 

W. a$ a+ 
$(Y) s z= O 

I 

Combining equations (D18) and (D15) yields 

iwilj + wj,i)(y) $$= O 

(DW 

(Dl7) 

ml81 

(P = 19) (Dl9) 
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Equation (D19) is expressed in terms of the contravariant vector + by 

Or, applying 

J g33 + O 

,Yj 0 -= 
a# 

yields 

(P = VI 0320) 

(j = 3,4) 

t A3n wy@ + A@n w73 
a@ 

(y) 3 = O 

From equations (49) and (D12), 

(P,$ = w 0321) 

WIG = 0 

Equations (12) and the orthogonality of dy3 to dy’ and dy2 imply 

3 
A3cY = g33 % 

0322) 

Thus equation (D21) becomes 

&O 

(Y) 
asp 

WA@ = 1,2) (~23) 
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which are two equati.ons in the unknowns 
( 
g w3 

I1 
+ “l\c/ w73) and (g33 “72 + g2$wy3)e 

The determinant of the coefficients ay 
formation from y@’ coordinates to 

p/BJ 

Zp 
is the Jacobian for the nonsingular trans- 

coordinates, and hence is nonvanishing. Thus, 
the trivial solution is the only solution, and 

gPec/(Y) 
We 

13(Y) = -g33(Y) wyP(Y) (P,4Q = 19) (~24) 

or 

=wq3 1- 65 
i ) 

= -,@P 
g33 w$p 

Thus, 

q3 = -&@ g33 wjp w = 1,2) (D25) 

Expanding the left-hand side of equation (D25) and then the right-hand side yields, by 
equations (19), (B5), and (Dll), 

awe + we - {u@3} =-FYRg33($+W~{u3~}) 
w3 

aw* 1 u *G =-+sw g 
aY3 ( ) 

agog ag30 -- 
w3 aY@ 

= -g@P g33[$+;w(Jg33 (?$-3)l 

= -g*rs g33 ,w3 _ 1 3 
aY@ 

p g 
G/p ag33 1 $ l&3 af%pp -+sw g 

aYP aY3 
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or 

By equations (Dll) and (D26), 

y* = y* (%l, Z”); therefore 

Hence, 

g33 dt (Q = $2) (D2 9) 

(P,Q = 13) (D26) 

(P,G = 1,2) 0327) 

CD=) 

(along y3 coordinate lines) 

Rate of Change of Vector Normal to Bottom Boundary 

The rate of change of the covariant vector n 
G 

normal to the bottom boundary, 
which enters into the application of the bottom boundary conditions, is derived in this sec- 
tion. At the bottom boundary, 

(D30) 
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i ) at 
YP 

= W&, - Jrz, 

and equation (D30) becomes 

i ) 
angY) 

-a, = “u(z) 
X 

~;;ip,o (J&l -%) +$(% -J&j 

= nu(z> aYe q$ ( a2jia (J$l - wh)+$~(% - J&,3? 

= “o(@ f$$% - Jh) 

= “Ic/iY) a;$ - (%I - Jh) 

Rate of Change of Velocity Component utY) 
at Bottom Boundary 

From equation (B12) or equations (B16), the velocity component at the bottom 

boundary is 

(D33) 

APPENDIX D 

The expression 5 
( ) 

is the rate of change of the coordinates y J/ of a point fixed 

9 
in the spatial Z system, or the velocity of the Z system relative to the y system 

expressed in y coordinates; thus, by equations (Dll), 

G 
i ) 
w - at za = Jl”y, - w$) (D31) 

Similarly, 
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U& = J3 - ii- n3[U1-J1)n1+(U2-J2)n2-V] 

=LnoJuw-!- 
( 
U1 

“3 “3 
nl + U2 n2 - v 

1 

The invariant scalar naJ” is, by equations (B14) and (B15), 

nuJa = n 2(z) sz 

Thus, 

a cc 9 n Jo 
at u 

Applying equation (D35) to equation (D34) and differentiating yields 

The quantities in equation (D36) are evaluated by 

i ) 
aug, P x aU(Y) - A autY) aYi 

at j;+ = af4 ayi az4 

aufY:(aY) ( ) 
U 

=- - 

af at ,cu 
+* 

Y@ 

or, by equations (D31), (Dll), and (D28), 

(D34) 

(D35) 

(D36) 

(D37) 
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Rate of Change of Earth-Fixed Z Coordinate System 

Velocity Jcu in y Coordinates 

The inertial Cartesian coordinate system ?I, shown in sketch (c), has the origin at 
the center of the Earth; therefore, the velocity of the Z coordinate system Jo- 

(4 
at a 

fixed point in Z@ coordinates does not change with time; or 

( ) aJiYZ) = 0 
at 

z@ 

Hence, the comoving time derivative of Jo! at a point fixed in the y coordinate system 
is 

DJO (-) dt (2) 
= Jqq?;) $= J'jucaj $= J;+) 

or, by equations (D9), 

= Jq+) Wls) = Jq+) W&) 

Thus, by equations (Dll), 

su (D38) 

or 

- aJa ~0 + J@ c~ 

WJ 

- aJcy qu + J@ a 

w" 
(DW 

dJo by equations (Dll). The term - 
dt(Y) 

in equation (D38) is the rate of change of Jo at 

a y grid point, or 
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Hence, by equations (D38) to (D40), 

( 1 - aJ@ SD aJiG) 

at y@ vu 

APPENDIX D 

Rate of Change of Gradient of Gravitational Potential 

Since Z3 is vertical, the gradient of the gravitational potential is 

ae ae 63 
s=,j131 

Thus, 

=XL ae aZ3 

a# Say4 ( ) 
a 

a@ ai 
c 

ae aii3 =- 

( )I 
at 

YU 

or, by equations (D32) and (D42) and the vanishing of J3 
(3 ’ 

0340) 

0341) 

(~42) 

a =- 
ay@ ayk (Y) ( 1 

-?LWk 
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Hence, by equations (Dll), 

(D43) 
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